

BADAN METEOROLOGI, KLIMATOLOGI, DAN GEOFISIKA

- Yth. 1. Direktur Gempa Bumi dan Tsunami;
 - 2. Direktur Seismologi Teknik, Geofisika Potensial, dan Tanda Waktu;
 - 3. Para Kepala Balai Besar Meteorologi, Klimatologi, dan Geofisika;
 - 4. Para Kepala Stasiun Geofisika di Lingkungan Badan Meteorologi, Klimatologi, dan Geofisika; dan
 - 5. Para Kepala Unit Pelaksana Teknis yang Ditunjuk sebagai Pusat Gempa Bumi Regional.

SURAT EDARAN NOMOR: SE.1/DG/IX/2025 TENTANG

PANDUAN PENYEDIAAN DAN PENYEBARAN INFORMASI GEMPA BUMI MAGNITUDO KURANG DARI LIMA

A. Umum

Indonesia merupakan negara yang terletak pada pertemuan 3 (tiga) lempeng tektonik dan memiliki banyak sesar aktif. Kondisi geologis ini menyebabkan Indonesia rentan terhadap terjadinya gempa bumi, baik yang bermagnitudo besar maupun kecil. Bahkan, gempa bumi dengan magnitudo kurang dari lima yang terjadi secara berulang, khususnya di kawasan padat penduduk atau wilayah dengan kondisi tanah tertentu, dapat menimbulkan dampak signifikan bagi masyarakat.

Badan Meteorologi, Klimatologi, dan Geofisika (BMKG) sebagai lembaga pemerintah yang bertugas melakukan pengamatan dan pelayanan informasi gempa bumi tektonik, bertanggung jawab dalam memberikan informasi gempa bumi secara cepat, tepat, akurat, dan mudah dipahami.

Seiring dengan meningkatnya kebutuhan masyarakat terhadap informasi gempa bumi guna meminimalisir dampak yang ditimbulkan, diperlukan panduan yang dapat dijadikan sebagai acuan dalam penyediaan dan penyebaran informasi gempa bumi, khususnya untuk kejadian gempa bumi dengan magnitudo kurang dari lima (M<5.0).

B. Maksud dan Tujuan

1. Maksud

Sebagai pedoman bagi Direktur Gempa Bumi dan Tsunami, Direktur Seismologi Teknik, Geofisika Potensial dan Tanda Waktu, para Kepala Balai Besar Meteorologi, Klimatologi, dan Geofisika, para Kepala Stasiun Geofisika, dan Unit Pelaksana Teknis yang ditunjuk sebagai Pusat Gempa Bumi Regional (PGR) dalam melakukan penyediaan dan penyebaran informasi gempa bumi M<5.0.

2. Tujuan

- a. Memastikan proses penyediaan dan penyebaran informasi gempa bumi M<5.0 dilakukan dalam waktu kurang dari 3 (tiga) menit setelah waktu kejadian gempa bumi.
- b. Memastikan proses penyediaan dan penyebaran informasi gempa bumi dirasakan atau memiliki skala intensitas lebih dari atau sama dengan II (dua) MMI dilakukan dalam waktu kurang dari 30 (tiga puluh) menit setelah waktu kejadian gempa bumi.
- c. Menyediakan data katalog gempa bumi M<5.0 yang telah melalui proses kendali mutu.

C. Ruang Lingkup

Ruang lingkup Surat Edaran ini meliputi:

- 1. penyediaan dan penyebaran informasi gempa bumi M<5.0;
- 2. penyediaan dan penyebaran informasi gempa bumi dirasakan atau memiliki skala intensitas lebih dari atau sama dengan II (dua) MMI; dan
- 3. evaluasi dan kendali mutu.

D. Dasar

- 1. Undang-Undang Nomor 31 Tahun 2009 tentang Meteorologi, Klimatologi, dan Geofisika (Lembaran Negara Republik Indonesia Tahun 2009 Nomor 139, Tambahan Lembaran Negara Nomor 5058);
- 2. Peraturan Pemerintah Nomor 46 Tahun 2012 tentang Penyelenggaraan Pengamatan dan Pengelolaan Data Meteorologi, Klimatologi, dan Geofisika (Lembaran Negara Republik Indonesia Tahun 2012 Nomor 88, Tambahan Lembaran Negara Republik Indonesia Nomor 5304);
- 3. Peraturan Pemerintah Nomor 11 Tahun 2016 tentang Pelayanan Meteorologi, Klimatologi, dan Geofisika (Lembaran Negara Republik Indonesia Tahun 2016 Nomor 87, Tambahan Lembaran Negara Republik Indonesia Nomor 5878);
- 4. Peraturan Presiden Nomor 93 Tahun 2019 tentang Penguatan dan Pengembangan Sistem Informasi Gempa Bumi dan Peringatan Dini Tsunami (Lembaran Negara Republik Indonesia Tahun 2019 Nomor 266);
- 5. Peraturan Presiden Nomor 12 Tahun 2024 tentang Badan Meteorologi, Klimatologi, dan Geofisika (Lembaran Negara Republik Indonesia Tahun 2024 Nomor 25);
- 6. Peraturan Badan Meteorologi, Klimatologi, dan Geofisika Nomor 6 Tahun 2020 tentang Organisasi dan Tata Kerja Balai Besar Meteorologi, Klimatologi, dan Geofisika, Stasiun Meteorologi, Stasiun Klimatologi, dan Stasiun Geofisika (Berita Negara Republik Indonesia Tahun 2020 Nomor 1371) sebagaimana telah beberapa kali diubah terakhir dengan Peraturan Badan Meteorologi, Klimatologi, dan Geofisika Nomor 4 Tahun 2023 tentang Perubahan Kedua atas Peraturan Badan Meteorologi, Klimatologi, dan Geofisika Nomor 6 Tahun 2020 tentang Organisasi dan Tata Kerja Balai Besar Meteorologi, Klimatologi, dan Geofisika, Stasiun Meteorologi, Stasiun Klimatologi, dan Stasiun Geofisika (Berita Negara Republik Indonesia Tahun 2023 Nomor 857);
- 7. Peraturan Badan Meteorologi, Klimatologi, dan Geofisika Nomor 2 Tahun 2024 tentang Organisasi dan Tata Kerja Badan Meteorologi, Klimatologi, dan Geofisika (Berita Negara Republik Indonesia Tahun 2024 Nomor 365).

E. Isi

- I. Penyediaan dan Penyebaran Informasi Gempa Bumi M<5.0
 - 1. Informasi gempa bumi M<5.0 meliputi parameter awal kejadian gempa bumi (preliminary event) dan pemutakhiran parameter (updated parameter).
 - 2. Parameter awal kejadian bumi disebarkan paling lambat 3 (tiga) menit setelah waktu kejadian gempa bumi.
 - 3. Pemutakhiran parameter kejadian gempa bumi disebarkan paling lambat 30 (tiga puluh) menit setelah waktu kejadian gempa bumi.
 - 4. Stasiun Geofisika lain dapat memberikan kontribusi pemutakhiran parameter informasi gempa bumi M<5.0 dalam hal terdapat penambahan fase waktu tiba Gelombang P dan Gelombang S paling lambat 15 (lima belas) menit setelah waktu kejadian gempa bumi.
 - 5. Informasi gempa bumi M<5.0 disebarkan melalui media komunikasi dan informasi.
 - 6. Media komunikasi dan informasi sebagaimana dimaksud dalam angka 5 dapat berupa aplikasi berbasis web dan/atau media sosial.
 - 7. Aplikasi berbasis web sebagaimana dimaksud dalam angka 5 dapat meliputi:
 - a. laman BMKG;
 - b. laman Indonesia Tsunami Early Warning System (Ina-TEWS);
 - c. laman WRS-NG; dan
 - d. aplikasi info BMKG.
 - 8. Parameter awal kejadian bumi disebarkan oleh Stasiun Geofisika/PGR yang paling cepat menganalisis sinyal gempa bumi yang terdeteksi oleh perangkat lunak pemantauan dan analisis gempa bumi.
 - 9. Penentuan parameter gempa bumi dapat dilakukan secara otomatis (automatic event) maupun melalui analisis manual.
 - 10. Apabila terdeteksi *automatic event*, petugas yang memiliki kompetensi di bidang geofisika harus melakukan pengecekan manual terhadap sinyal gempa bumi untuk memastikan kejadian tersebut merupakan peristiwa seismik yang nyata (*real event*) atau kejadian yang terdeteksi oleh sistem namun bukan merupakan gempa bumi (*ghost event*).
 - 11. Penentuan *real event* atau *ghost event* didasarkan pada kesesuaian antara lokasi hiposenter gempa bumi (lintang, bujur, dan kedalaman) dengan zona seismik aktif.
 - 12. Apabila berdasarkan hasil pengecekan manual dipastikan bahwa sinyal gempa bumi tersebut merupakan *real event*, maka petugas memastikan episenter (lintang dan bujur) berada di wilayah tanggung jawabnya.
 - 13. Petugas segera melakukan evaluasi cepat terhadap hasil analisis otomatis dengan mempertimbangkan batas waktu kurang dari 3 (tiga) menit.
 - 14. Parameter informasi gempa bumi M<5.0 terdiri dari:
 - a. magnitudo;
 - b. tanggal kejadian;
 - c. waktu kejadian disesuaikan ke dalam zona Waktu Indonesia Barat (WIB);
 - d. lintang;
 - e. bujur;
 - f. jarak episenter dari kota terdekat dalam satuan kilometer;

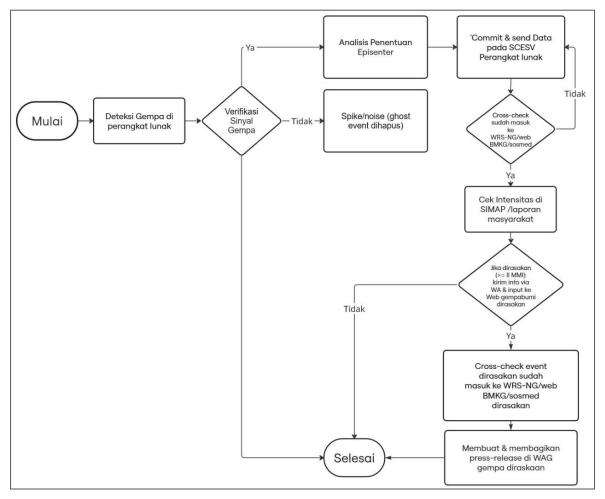
- g. arah mata angin lokasi episenter dari kota terdekat dan nama kota/kabupaten;
- h. nama provinsi; dan
- i. kedalaman gempa bumi dalam satuan kilometer.
- 15. Dalam hal terdapat perbedaan parameter gempa bumi yang disebarkan oleh PGR/Stasiun Geofisika dengan Pusat Gempa Bumi Nasional (PGN), maka informasi parameter gempa bumi harus disesuaikan dan disebarkan kembali oleh PGR dan Stasiun Geofisika selain PGR sesuai parameter resmi dari PGN.
- 16. Penyediaan informasi gempa bumi M<5.0 dilaksanakan sesuai dengan alur sebagaimana tercantum dalam Lampiran I yang merupakan bagian tidak terpisahkan dari Surat Edaran ini.
- 17. Informasi gempa bumi M<5.0 dibuat sesuai dengan format sebagaimana tercantum dalam Lampiran II yang merupakan bagian tidak terpisahkan dari Surat Edaran ini.
- 18. Penyebaran informasi gempa bumi M<5.0 dilakukan sesuai mekanisme yang tercantum dalam Lampiran III yang merupakan bagian tidak terpisahkan dari Surat Edaran ini.
- II. Penyediaan dan Penyebaran Informasi Gempa Bumi Dirasakan atau Memiliki Skala Intensitas Lebih Dari atau Sama Dengan II (dua) MMI
 - 1. Apabila kejadian gempa bumi M<5.0 dirasakan atau memiliki skala intensitas lebih dari atau sama dengan II (dua) (≥ II) MMI, PGR menyebarkan informasi tambahan gempa bumi dirasakan atau memiliki skala intensitas ≥ II MMI.
 - 2. Informasi tambahan gempa bumi dirasakan atau memiliki skala intensitas ≥ II MMI disebarkan paling lambat 30 (tiga puluh) menit setelah waktu kejadian gempa bumi menggunakan pemutakhiran parameter melalui siaran pers.
 - 3. Siaran pers informasi tambahan gempa bumi dirasakan atau memiliki skala intensitas ≥ II MMI dibuat sesuai format sebagaimana tercantum dalam Lampiran IV yang merupakan bagian tidak terpisahkan dari Surat Edaran ini.
 - 4. Penyebaran informasi gempa bumi M<5.0 dirasakan atau memiliki skala intensitas ≥ II MMI dilakukan sesuai mekanisme yang tercantum dalam Lampiran V yang merupakan bagian tidak terpisahkan dari Surat Edaran ini.

III. Evaluasi dan Kendali Mutu

- 1. Penyebaran informasi gempa bumi M<5.0 dievaluasi secara otomatis dalam sistem setiap 1 (satu) kali dalam 1(satu) minggu.
- 2. Hasil evaluasi sebagaimana dimaksud pada angka 1 ditampilkan sesuai contoh sebagaimana tercantum dalam Lampiran VI yang merupakan bagian tidak terpisahkan dari Surat Edaran ini.
- 3. Stasiun Geofisika dan UPT yang ditunjuk sebagai PGR harus melaksanakan proses kendali mutu untuk memastikan keakuratan dalam penyediaan dan penyebaran informasi gempa bumi M<5.0.
- 4. Kendali mutu sebagaimana dimaksud pada angka 3, terdiri dari:
 - a. kendali mutu pertama;
 - b. kendali mutu kedua;
 - c. kendali mutu ketiga; dan
 - d. kendali mutu keempat.
- 5. Kendali mutu pertama merupakan hasil *automatic event* yang telah dianalisis secara manual oleh petugas yang bertugas dalam sif,

- dilakukan paling lambat 3 (tiga) menit setelah kejadian gempa bumi.
- 6. Kendali mutu kedua dilakukan oleh petugas yang bertugas dalam sif sebagai kelanjutan dari kendali mutu pertama dan dilakukan paling lambat 30 (tiga puluh) menit setelah kejadian gempa bumi, dengan:
 - a. penambahan fase dan perbaikan *picking* Gelombang P dan Gelombang S; dan
 - b. mempertimbangkan tataan tektonik setempat.
- 7. Kendali mutu ketiga dilakukan oleh petugas yang bertugas pada sif berikutnya sebagai kelanjutan dari kendali mutu kedua dan dilakukan paling lambat 24 (dua puluh empat) jam setelah kejadian gempa bumi, dengan:
 - a. penambahan fase dan perbaikan *picking* Gelombang P dan Gelombang S;
 - b. mempertimbangkan tataan tektonik setempat;
 - c. membandingkan parameter gempa bumi dengan institusi kegempaan internasional; dan
 - d. menentukan tipe magnitudo.
- 8. Kendali mutu keempat dilakukan sebagai kelanjutan dari kendali mutu ketiga untuk mendapatkan data katalog gempa bumi final yang dilakukan oleh tim kendali mutu dari PGR yang ditetapkan oleh Kepala UPT yang ditunjuk sebagai PGR dan dilakukan paling lambat 7 (tujuh) hari setelah kendali mutu pertama.
- 9. Kendali mutu sebagaimana dimaksud pada angka 3 dilaksanakan sesuai tahapan sebagaimana tercantum dalam Lampiran VII yang merupakan bagian tidak terpisahkan dari Surat Edaran ini.

F. Penutup


Direktur Gempa Bumi dan Tsunami, Direktur Seismologi Teknik dan Tanda Waktu, para Kepala Balai Besar Meteorologi, Klimatologi, dan Geofisika, para Kepala Stasiun Geofisika di Lingkungan Badan Meteorologi, Klimatologi, dan Geofisika, para Kepala Unit Pelaksana Teknis yang ditunjuk sebagai Pusat Gempa Bumi Regional dalam pelaksanaan penyediaan dan penyebaran informasi gempa bumi M<5.0 dan gempa bumi dirasakan, agar menyesuaikan dengan ketentuan dalam Surat Edaran ini.

Ditetapkan di Jakarta Pada tanggal 1 September 2025

DEPUTI BIDANG GEOFISIKA BADAN METEOROLOGI, KLIMATOLOGI, DAN GEOFISIKA,

LAMPIRAN I
SURAT EDARAN DEPUTI BIDANG
GEOFISIKA BADAN METEOROLOGI,
KLIMATOLOGI, DAN GEOFISIKA,
NOMOR: SE.1/DG/IX/2025
TENTANG PANDUAN PENYEDIAAN DAN
PENYEBARAN INFORMASI GEMPA BUMI
MAGNITUDO KURANG DARI LIMA

ALUR PENYEDIAAN INFORMASI GEMPA BUMI M<5.0

Bagan alur penyediaan informasi gempa bumi M<5.0

Keterangan:

Deteksi Kejadian Gempa Bumi

Petugas memantau perangkat lunak pemantauan dan analisis gempa bumi untuk mendeteksi adanya kejadian gempa bumi.

Verifikasi Kejadian Gempa Bumi

- 1. Petugas melakukan pengecekan sinyal gempa bumi untuk membedakan antara *ghost event* dan *real event*. Pengecekan dilakukan berdasarkan kesesuaian sumber gempa bumi dengan zona seismik aktif.
- 2. Jika bukan sinyal gempa bumi (*ghost event*) maka dapat dihapus, dan proses selesai.
- 3. Jika merupakan sinyal gempa bumi, maka petugas melanjutkan untuk menganalisis dengan perangkat lunak pengolahan gempa bumi.

Pengolahan dan Analisis Data

1. Petugas segera melakukan analisis (*picking* waktu tiba gelombang P dan gelombang S) untuk memilih hasil terbaik dari data yang tersedia.

2. Petugas menekan tombol "Commit to Database" dan "Send This Data" pada perangkat lunak untuk mengirimkan parameter gempa bumi (kurang dari 3 (tiga) menit).

3. Petugas melakukan pengecekan event yang sudah masuk di laman WRS-NG,

aplikasi berbasis web, dan media sosial.

Pemeriksaan Informasi Intensitas

Petugas memeriksa aplikasi intensitas gempa bumi (SIMAP) dan atau menerima informasi dari masyarakat untuk memperoleh informasi terkait dampak gempa bumi di sekitar episenter.

Gempa bumi dirasakan

- 1. Jika Ya, gempa bumi tersebut dirasakan (Intensitas ≥ II MMI), maka petugas menginput ke laman gempa bumi dirasakan. Dilanjutkan dengan membuat siaran pers/press release (Lampiran III) dan disebarkan ke aplikasi Whatsapp Group (WAG).
- 2. Jika Tidak, maka proses selesai

SIMAP (Seismic Intensity Map): Aplikasi atau sistem yang menampilkan informasi intensitas gempa bumi dari instrumen.

Verifikasi Gempa telah terkirim

Jika Ya gempa bumi dirasakan, maka petugas perlu *cross-check event* gempa bumi dirasakan, sudah masuk ke laman WRS-NG/laman BMKG Dirasakan/ media sosial.

DEPUTI BIDANG GEOFISIKA BADAN METEOROLOGI, KLIMATOLOGI, DAN GEOFISIKA,

LAMPIRAN II
SURAT EDARAN DEPUTI BIDANG
GEOFISIKA BADAN METEOROLOGI,
KLIMATOLOGI, DAN GEOFISIKA,
NOMOR: SE.1/DG/IX/2025
TENTANG PANDUAN PENYEDIAAN DAN
PENYEBARAN INFORMASI GEMPA BUMI
MAGNITUDO KURANG DARI LIMA

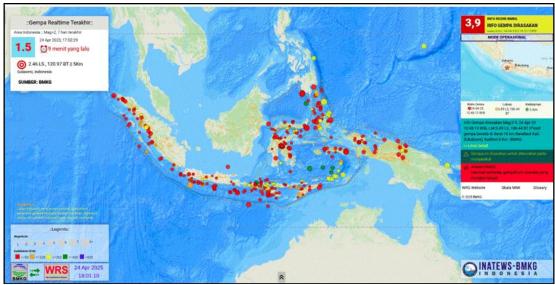
FORMAT INFORMASI GEMPA BUMI M<5.0

Info Gempa Mag:4.8, 25-5	Sep-22 03:3	2:27 WII	B, Lok:9.63	LS,114.37 I	BT (132 km
BaratDaya KUTASELATA	N-BALI), K	edlmn:10	0 Km ::BMK	G-PGR III	

Keterangan:

- 1. Magnitudo
- 2. Tanggal kejadian gempa bumi.
- 3. Waktu kejadian disesuaikan ke dalam zona Waktu Indonesia Barat.
- 4. Lintang.
- 5. Bujur.
- 6. Jarak episenter dari kota terdekat dalam satuan kilometer.
- 7. Arah mata angin lokasi episenter dari kota terdekat dan nama kota/kabupaten.
- 8. Nama provinsi.
- 9. Kedalaman gempa bumi dalam satuan kilometer (km).
- 10. PGR/Stasiun Geofisika mengakhiri pelaporan dengan mencantumkan instansi serta nama PGR/Stasiun Geofisika yang melaporkan.

DEPUTI BIDANG GEOFISIKA BADAN METEOROLOGI, KLIMATOLOGI, DAN GEOFISIKA,

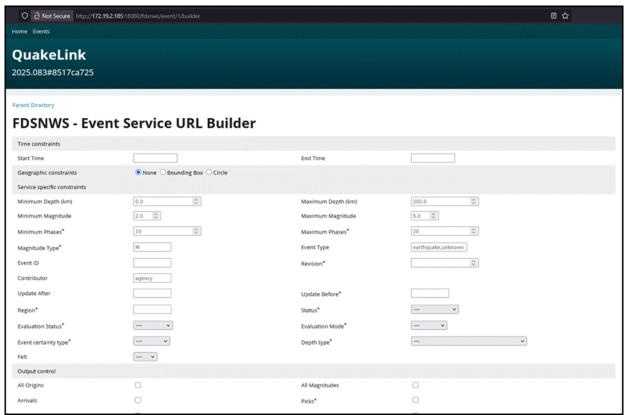

LAMPIRAN III
SURAT EDARAN DEPUTI BIDANG
GEOFISIKA BADAN METEOROLOGI,
KLIMATOLOGI, DAN GEOFISIKA,
NOMOR: SE.1/DG/IX/2025
TENTANG PANDUAN PENYEDIAAN DAN
PENYEBARAN INFORMASI GEMPA BUMI
MAGNITUDO KURANG DARI LIMA

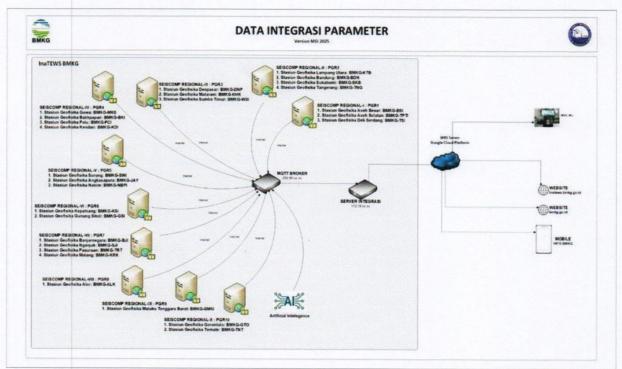
MEKANISME PENYEBARAN INFORMASI GEMPA BUMI M<5.0

Langkah-langkah yang harus dilakukan oleh UPT ketika terjadi gempa bumi adalah sebagai berikut:

- 1. Jika proses otomatis (*automatic processing*) berjalan dan *event* telah terbentuk di perangkat lunak pemantauan dan analisis gempa bumi, lakukan *review*, kemudian *relocate* dan *commit* pada *origin locator view* Perangkat Lunak untuk mengubah status *event* menjadi *Confirm* (C)/*manual* (M).
- 2. Setelah itu, klik tombol "send this data" pada modul event summary view perangkat lunak pemantauan dan analisis gempa bumi untuk mengirimkan parameter tersebut ke sistem.
- 3. Gunakan pertimbangan seismologis dengan pengecekan berdasarkan kesesuaian sumber gempa bumi dengan zona seismik aktif. Jika suatu kejadian teridentifikasi sebagai *ghost event* atau *false event* berdasarkan hasil evaluasi dan analisis sinyal, maka kejadian tersebut tidak perlu diproses lebih lanjut.
- 4. Lakukan pengecekan pada WRS-NG (Gambar 1).
- 5. Pastikan data gempa bumi terbaru telah masuk dan muncul pada panel sebelah kiri dengan label "::Gempa Bumi Terkini::".
- 6. Waktu yang tercatat pada log pengiriman adalah data yang pertama kali masuk pada suatu *event* gempa bumi. Jika UPT lain mengirimkan parameter yang sama, maka akan digunakan sebagai parameter *update*.
- 7. Log pengiriman dapat dilihat pada url yang telah ditentukan, warna merah menunjukan pengiriman lebih dari 3 (tiga) menit, sedangkan warna hijau menunjukan pengiriman sudah sesuai 3 (tiga) menit pada Gambar 2. Waktu dicatat pada saat data sudah dikirim ke cloud API.
- 8. Untuk data gempa bumi terkini per-regional dapat dipantau di halaman web newESDX (Gambar 3) pada url yang telah ditentukan.
- 9. UPT menyebarluaskan informasi gempa bumi menggunakan parameter dari newESDX dengan tambahan disclaimer:
 - "Disclaimer: Informasi ini mengutamakan kecepatan, sehingga hasil pengolahan data belum stabil dan bisa berubah seiring kelengkapan data" Catatan: parameter gempa bumi newESDX akan selalu berubah seiring dengan hasil analisis terbaru dengan penambahan jumlah sensor yang mencatat gempa tersebut.
- 10. Dalam kasus magnitudo kritis (batas M 5.0), dalam kejadian UPT sudah menyebarluaskan parameter awal dengan M<5.0 sesaat kemudian PGN menyebarluaskan M>5.0, maka UPT wajib menyebarluaskan kembali dengan menggunakan parameter dari PGN.
- 11. Jika dalam kasus PGN mendapatkan parameter M<5.0 dan UPT mendapatkan parameter M>5.0, maka UPT wajib menyebarluaskan kembali dengan menggunakan parameter dari UPT dengan magnitudo kurang dari 5.0 (UPT perlu menghitung ulang magnitudo sehingga di dapatkan magnitudo kurang dari 5).

- 12. Untuk melakukan *download* data katalog gempa bumi final dan pelaporan buletin, UPT dapat dilakukan menggunakan FDSN National Database (Gambar 4) menggunakan alamat URL yang telah ditentukan.
- 13. Setiap UPT dan/atau PGR memiliki kode UPT untuk membedakan pengirim dalam log pengiriman pada *dashboard*.
- 14. Untuk keperluan otomatisasi di PGR dan UPT dapat menggunakan metode *subscribe* dengan topik /disseminasi/dibawah5 pada alamat broker MQTT yang telah ditentukan. Diagram skema integrasi parameter gempa bumi dapat dilihat pada Gambar 5.


Gambar 1. Contoh_Tampilan WRS-NG


Gambar 2. Contoh tampilan log pengiriman

Gambar 3. Contoh Tampilan halaman ESDX

Gambar 4. Contoh Tampilan halaman event builder FDSN

Gambar 5. Diagram Skema Integrasi Parameter Gempa Bumi

DEPUTI BIDANG GEOFISIKA BADAN METEOROLOGI, KLIMATOLOGI, DAN GEOFISIKA,

LAMPIRAN IV
SURAT EDARAN DEPUTI BIDANG
GEOFISIKA BADAN METEOROLOGI,
KLIMATOLOGI, DAN GEOFISIKA,
NOMOR: SE.1/DG/IX/2025
TENTANG PANDUAN PENYEDIAAN DAN
PENYEBARAN INFORMASI GEMPA BUMI
MAGNITUDO KURANG DARI LIMA

FORMAT SIARAN PERS GEMPA BUMI M<5.0

GEMPA BUMI TEKTONIK M4,3 DI PANTAI BARAT SUMATERA,	٦	
1 2	- 1	Judul
NIAS SELATAN, SUMATERA UTARA, TIDAK BERPOTENSI TSUNAMI		
3	J	

Kejadian dan Parameter Gempa Bumi: 16

Hari ... pukul ... WIB wilayah ... diguncang gempa bumi tektonik. Hasil analisis BMKG menunjukkan gempa bumi ini memiliki parameter *update* dengan magnitudo ... Episenter gempa bumi terletak pada koordinat ... LS; ... BT, atau tepatnya berlokasi di laut pada jarak ... km arah ... pada kedalaman ... km.

Jenis dan Mekanisme Gempa Bumi: 🔓 7

Dengan memperhatikan lokasi episenter dan kedalaman hiposenternya, gempa bumi yang terjadi merupakan jenis gempa bumi ... akibat... Hasil analisis mekanisme sumber menunjukkan bahwa gempa bumi memiliki mekanisme pergerakan ...

Dampak Gempa Bumi:] 8

Berdasarkan estimasi peta guncangan (*shakemap*), gempa bumi ini menimbulkan guncangan di daerah ... dengan skala intensitas ... MMI (Tambahkan keterangan kekuatan guncangan gempa bumi dalam MMI), Hingga saat ini belum ada laporan dampak kerusakan yang ditimbulkan akibat gempa bumi tersebut. Hasil pemodelan menunjukkan bahwa gempa bumi ini TIDAK BERPOTENSI TSUNAMI.

Gempa Bumi Susulan: } 9

Hingga pukul ... WIB, hasil monitoring BMKG menunjukkan adanya aktivitas gempa bumi susulan (*aftershock*) ...

Rekomendasi: 10

Kepada masyarakat dihimbau agar tetap tenang dan tidak terpengaruh oleh isu yang tidak dapat dipertanggungjawabkan kebenarannya. Agar menghindari dari bangunan yang retak atau rusak diakibatkan oleh gempa bumi. Periksa dan pastikan bangunan tempat tinggal anda cukup tahan gempa bumi, ataupun tidak ada kerusakan akibat getaran gempa bumi yang membahayakan kestabilan bangunan sebelum anda kembali ke dalam rumah.

Pastikan informasi resmi hanya bersumber dari BMKG yang disebarkan melalui kanal komunikasi resmi yang telah terverifikasi (Instagram/Twitter@infoBMKG), website (http://www.bmkg.go.id atau inatews.bmkg.go.id), telegram channel (https://t.me/InaTEWS_BMKG) atau melalui Mobile Apps (IOS dan Android): wrs-bmkg atau infobmkg.* 11

 - 13
 14

Keterangan:

Judul berisi informasi gempa bumi yang terjadi, meliputi:

- 1. magnitudo gempa bumi;
- 2. lokasi kejadian gempa bumi (di laut/ di darat) Arah mata angin lokasi episenter dari Pulau terdekat;
- 3. kabupaten/ kota terdekat dan nama kota;
- 4. nama provinsi; dan
- 5. berpotensi tsunami atau tidak berpotensi tsunami.

Isi:

6. Kejadian dan Parameter Gempa Bumi

Berisi narasi parameter gempa bumi yaitu hari dan waktu kejadian gempa bumi, lokasi gempa bumi, magnitudo, lintang dan bujur episenter gempa bumi, jarak episenter gempa bumi dari kota terdekat dalam satuan km (kilometer), arah mata angin lokasi episenter dari kota terdekat, nama provinsi dan kedalaman gempa bumi dalam satuan km.

7. Jenis dan Mekanisme Gempa Bumi

Berisi narasi penyebab gempa bumi dan analisis *focal mechanism* sumber gempa bumi.

Catatan: Untuk sumber gempabumi yang berasal dari zona Sesar harus menggunakan referensi sesar yang berasal dari PuSGeN 2024, jika petugas belum yakin akan nama sesar penyebab gempa, maka dapat disebutkan hanya "sesar aktif".

8. Dampak Gempa Bumi

Berisi narasi wilayah yang merasakan gempa bumi berdasarkan hasil instrumen maupun keterangan dari masyarakat, dengan memasukkan nama daerah tingkat kecamatan dan keterangan dirasakan dengan memasukkan skala intensitas guncangan dalam format angka romawi diakhiri dengan satuan MMI. Ditambahkan informasi dampak kerusakan apabila ada, dan potensi tsunami atau tidak berpotensi tsunami.

(Catatan: Jika daerah yang merasakan gempa lebih dari satu dengan intensitas guncangan yang berbeda maka diurutkan dari intensitas terbesar ke intensitas terkecil).

9. Gempa Bumi Susulan

Berisi narasi jumlah gempa bumi susulan apabila terdapat aktivitas gempa bumi susulan (aftershock).

10. Rekomendasi

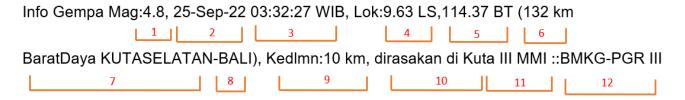
Berisi narasi rekomendasi atau imbauan kepada masyarakat agar tetap tenang dan tidak terpengaruh oleh isu yang tidak dapat dipertanggungjawabkan kebenarannya. Agar menghindari dari bangunan yang retak atau rusak diakibatkan oleh gempa bumi. Periksa dan pastikan bangunan tempat tinggal anda cukup tahan gempa bumi, ataupun tidak ada kerusakan akibat getaran gempa bumi yang membahayakan kestabilan bangunan sebelum anda kembali ke dalam rumah.

11. Sumber Informasi

Berisi narasi sumber informasi agar dipastikan informasi resmi hanya bersumber dari BMKG yang disebarkan melalui kanal komunikasi resmi yang telah terverifikasi (aplikasi Instagram atau Twitter @infoBMKG), laman http://www.bmkg.go.id atau inatews.bmkg.go.id, telegram *channel* https://t.me/InaTEWS_BMKG atau melalui Mobile Apps (IOS dan Android): wrs-bmkg atau infobmkg.

- 12. Diiisi dengan nama Lokasi dan Tanggal dikeluarkan siaran pers.
- 13. Diisi nama PGR yang mengeluarkan siaran pers.
 14. Diisi Nama Pejabat PGR yang mengeluarkan siaran pers.

DEPUTI BIDANG GEOFISIKA BADAN METEOROLOGI, KLIMATOLOGI, DAN GEOFISIKA,


LAMPIRAN V
SURAT EDARAN DEPUTI BIDANG
GEOFISIKA BADAN METEOROLOGI,
KLIMATOLOGI, DAN GEOFISIKA,
NOMOR: SE.1/DG/IX/2025
TENTANG PANDUAN PENYEDIAAN DAN
PENYEBARAN INFORMASI GEMPA BUMI
MAGNITUDO KURANG DARI LIMA

MEKANISME PENYEBARAN INFORMASI GEMPA BUMI DIRASAKAN M<5.0 ATAU MEMILIKI SKALA INTENSITAS LEBIH DARI ATAU SAMA DENGAN II (DUA) MMI

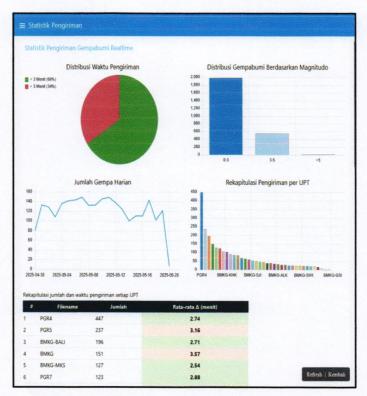
Dalam hal gempa bumi M<5.0 dirasakan atau memiliki skala intensitas lebih dari atau sama dengan II (dua) MMI:

- 1. Informasi terkait parameter gempa bumi dan daerah terdampak disampaikan melalui aplikasi *WhatsApp Group* (WAG) "Gempa Dirasakan" atau media komunikasi lainnya sesuai format Informasi Gempa Bumi Dirasakan M < 5.0 (Terlampir di bawah).
- 2. Data akan di-*input* oleh petugas PGR ke dalam laman "Gempa Dirasakan" sebagai bagian dari dokumentasi resmi kejadian gempa bumi.
- 3. Siaran pers dibuat oleh PGR dan dibagikan melalui aplikasi *WhatsApp* (WA) atau media komunikasi lainnya kepada pihak terkait sesuai Standar Operasional Prosedur (SOP) yang berlaku.

FORMAT INFORMASI GEMPA BUMI DIRASAKAN M<5.0

Keterangan:

- 1. Magnitudo
- 2. Tanggal kejadian gempa bumi.
- 3. Waktu kejadian disesuaikan ke dalam zona Waktu Indonesia Barat.
- 4. Lintang.
- 5. Bujur.
- 6. Jarak episenter dari kota terdekat dalam satuan kilometer.
- 7. Arah mata angin lokasi episenter dari kota terdekat dan nama kota/kabupaten.
- 8. Nama provinsi.
- 9. Kedalaman gempa bumi dalam satuan kilometer (km).
- 10. Keterangan dirasakan dengan memasukkan nama daerah tingkat Kecamatan (dalam hal dirasakan dan dibuat dengan format tersendiri).
- 11. Keterangan dirasakan dengan memasukkan skala intensitas guncangan dalam format angka romawi diakhiri dengan satuan MMI (dalam hal dirasakan dan dibuat dengan format tersendiri).


12. PGR mengakhiri pelaporan dengan mencantumkan instansi serta nama PGR yang melaporkan.

DEPUTI BIDANG GEOFISIKA BADAN METEOROLOGI, KLIMATOLOGI, DAN GEOFISIKA,

LAMPIRAN VI SURAT EDARAN DEPUTI BIDANG GEOFISIKA BADAN METEOROLOGI, KLIMATOLOGI, DAN GEOFISIKA, NOMOR: SE.1/DG/IX/2025 TENTANG PANDUAN PENYEDIAAN DAN PENYEBARAN INFORMASI GEMPA BUMI MAGNITUDO KURANG DARI LIMA

TAMPILAN HASIL EVALUASI PENGIRIMAN INFORMASI GEMPA BUMI M<5.0

- 1. Setiap pengiriman informasi gempa bumi M<5.0 ke aplikasi berbasis web sebagaimana dimaksud, dapat meliputi:
 - a. laman BMKG;
 - b. laman Indonesia Tsunami Early Warning System (Ina-TEWS); dan
 - c. laman WRS-NG.
 - d. laman info BMKG
 - akan tercatat dalam *log* pengiriman (Gambar 2 Lampiran II) dan dievaluasi secara otomatis setiap 1 (satu) kali dalam 1(satu) minggu.
- 2. Sistem akan menyediakan hasil evaluasi dalam bentuk persentase pengiriman per-regional yang kemudian akan dikirim ke aplikasi grup *WhatsApp* (WAG) UPT dan ditampilkan di *Dashboard* DGT (Gambar 6).
- 3. Penanda merah akan diberikan jika jumlah pengiriman yang sesuai standar 3 menit berada di bawah 95%.

Gambar 6. Contoh Tampilan Statistik Pengiriman pada Dashboard DGT

DEPUTI BIDANG GEOFISIKA BADAN METEOROLOGI, KLIMATOLOGI, DAN GEOFISIKA,

LAMPIRAN VII
SURAT EDARAN DEPUTI BIDANG
GEOFISIKA BADAN METEOROLOGI,
KLIMATOLOGI, DAN GEOFISIKA,
NOMOR: SE.1/DG/IX/2025
TENTANG PANDUAN PENYEDIAAN DAN
PENYEBARAN INFORMASI GEMPA BUMI
MAGNITUDO KURANG DARI LIMA

TAHAPAN KENDALI MUTU INFORMASI GEMPA BUMI M<5.0

Kendali mutu informasi gempa bumi M<5.0 dilakukan oleh petugas sesuai langkah-langkah sebagai berikut:

- 1. membuka kembali kejadian gempa bumi yang telah dianalisis sebelumnya pada modul *origin locator view* perangkat lunak.
- 2. memilih *tab Events* pada *toolbar*, lalu klik *event* yang akan dianalisis ulang (pada umumnya kejadian gempa bumi yang belum dilakukan analisis ulang memiliki jenis magnitudo "M").
- 3. seketika akan berpindah ke tab *Location* yang berisikan parameter awal beserta parameter *pick* yang telah dilakukan, lalu memilih *picker*.
- 4. melakukan analisis ulang pada kejadian gempa bumi tersebut dengan melakukan koreksi pada *picking* fase Gelombang P dan Gelombang S yang sesuai dengan anatomi seismogram.
- 5. ketika sudah mengoreksi hasil *picking* sebelumnya dan menambahkan *picking* fase gelombang yang terlihat, maka kembali ke *tab Location* pada modul *origin locator view* perangkat lunak menggunakan menu dengan simbol.
- 6. lalu klik *Relocate*, maka akan muncul parameter baru seperti *origin time*, *elliptical error*, *phases*, *RMS Residual*, dan *Azimuth Gaps*. Parameter tersebut diusahakan mendapat nilai parameter baru RMS Residual < 2, *Ellipsoid Error* (X,Y,Z < 20 Km), dan *Azimuth Gaps* < 180°. Analisis lebih lanjut untuk gempa bumi M≥4.5 atau signifikan untuk mendapatkan mekanisme gempa bumi dengan kriteria hasil inversi mendapatkan *misfit focal mechanism* <30% (khusus PGN dan PGR III).
- 7. setelah itu, *Compute Magnitudes* untuk mendapatkan nilai magnitudo pada jenis mb, mB, ML, MLv, dan Mwp. Untuk memilih jenis magnitudo yang digunakan masuk ke *tab Event* dan mempertimbangkan jumlah stasiun yang digunakan untuk menghitung magnitudo (*Count*) dan *RMS*. Klik *Fix Type* untuk memilih magnitudo yang diinginkan.
- 8. kembali ke *tab Location*, lalu klik *Commit* untuk mendapatkan *event* quality control.
- 9. untuk kendali mutu ketiga status gempa bumi diubah menjadi V (*Reviewed*) dengan cara klik dan tahan tombol *commit* hingga muncul *pop up windows "with additional option*", lalu ubah status dari C (*Confirmed*) menjadi V (*Reviewed*), lalu klik OK setelah itu klik *send this data*.
- 10. untuk kendali mutu keempat status gempa bumi diubah menjadi F (*Final*) dengan cara klik dan tahan tombol *commit* hingga muncul *pop up windows* "*with additional option*", lalu ubah status dari V (*Reviewed*) menjadi F (*Final*). Lalu klik OK, setelah itu klik *send this data*.

Keterangan:

1. Ellipsoid Error, dalam penentuan posisi, "error ellipsoid" atau "error ellipse" digunakan untuk menggambarkan ketidakpastian posisi suatu titik dalam dua atau tiga dimensi. Ini adalah representasi visual dari distribusi probabilitas kesalahan, menunjukkan area di mana posisi sebenarnya dari

suatu titik kemungkinan besar berada. Sumbu-sumbu elips atau elipsoid menunjukkan arah dan besarnya kesalahan maksimum dan minimum.

RMS Residual (Root Mean Square Residual) adalah ukuran statistik yang menunjukkan seberapa jauh rata-rata data yang diprediksi atau diukur dari nilai sebenarnya. Dalam konteks pemodelan statistik, ini adalah standar deviasi dari "residual" (perbedaan antara nilai yang diprediksi dan nilai aktual). Semakin rendah nilai RMS Residual, semakin baik model atau pengukuran tersebut cocok dengan data.

Azimuth Gaps adalah penentuan lokasi sumber sinyal/data dalam 3. penentuan lokasi gempa bumi. "Azimuthal gap" adalah sudut terbesar antara azimuth dua stasiun pengukur (misalnya, stasiun seismik) yang berdekatan, diukur dari titik sumber sinyal (episentrum gempa). Kesenjangan azimuth yang besar (>180°) menunjukkan cakupan stasiun yang buruk di arah tertentu, yang dapat menyebabkan ketidakakuratan dalam penentuan lokasi sumber sinyal.

> DEPUTI BIDANG GEOFISIKA BADAN METEOROLOGI, KLIMATOLOGI. DAN GEOFISIKA,